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Introduction

Because of the magnitude of the accomplishmen=s of the last 6 months,

it was necessary to deviate from =he usual let=er-type report. The

i major accomplishments are:

• Resolution of =he difficulties in solution methodology to be

used to deal with the potentially highly nonlinear rotor equa-

tions when dynamic coupling is included.

' . A solution methodology is selected to solve the nonlinear

differential equations. The selected method was verified to

give good results even at large nonlinearity levels•

' Extension of the transfer matrix methodology to the solution

of nonllnear problems. It is belleved that this is a tech-

nlcal first. Transfer matrix methods are obstenslbly a

i linear mechanics method. They now have nonlinear capabilities.
Moreover, these nonlinear analysis capabilities extend into

I large regime, is hoped this work will
the nonlinear It that

open up new applications of transfer matrices to structural

Ii m.chanlc, problems

These toplce will be discussed in the above order in that this
chronology presents the logical progression co the transfer matrlx

g breakthrough
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RESOLUTION OF DIFFICULTIES WITH PREVIOUS SOLUTION D_THODOLOGY

The solution technique as reported in the previous report was found

to be deficient in several areas. Also, it was somewhat erroneously

termed a harmonic-balance technique, while, in fact, it was more a

modification of the perturbation technique. The greatest deficiency was

that it produced accurate results only for cases where the nonlinearity

was small, like the perturbation technique. Since our motivation for

dealing with the dynamically coupled rotor problem is that it is sus-

pected that the nonlinearities are not small. This was a serious short-

coming. Also, the approximate solution predicted regions of subharmonic

instability that could not be substantiated by time transient numerical

solutions. Hence, a superior technique was sought for solving problems

of this type.?

The technique investigated is indeed the classical harmonlc-balance

technique, but with a slightly different method of actually obtaining

the soluti,n. Indeed, the solution of linear ordinary differential

equations with periodic solutions uses the harmonlc-balance technique.

For a linear ordinary differential equation with a periodic solu-

i tlon, one assumes the form of the solution and substitutes this assumed

I solution into the differential equation. This results in an algebraic

equation that can be solved for the unknown response amplitude and phase
I

i relatlonshi_. This results in an exact solution for the linear differ-

ential equation.

I
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In dealing with nonlinear ordinary differential equations, this

same technique can be used to obtain approximate periodic solutions.

A form of the solution is assumed and sL _stltuted into the differ-

ential equation. Due to the nonlinearities, this often results in

an algebraic equation containing trigonometric functions raised to

integer powers. These terms can be reduced to simple harmonic func-

tions through the use of trigonometric identities. The resulting

equation is algebraic in nature, containing trigonometric terms,

primarily s_nes and cosines of many frequencies on the right-hand

side of the equation while containing only terms of a single frequency

on the left-hand side. It can be argued that if the resulting equa-

tlon is indeed an identity, the coefficients of the sines and cosines

on both sides of the equation must form and identity. Hence, one equ-

I aces coefficients of llke frequencies of sines and cosines, ignoring those

those harmonic terms not in the assumed solution, and obtains simple

i algebraic expressions which can be solved for the unknown amplitude
L

i and phase information. Perhaps at this point an example would serve

! to clarify the above description.

I SOLUTION OF DUFFING'S EQUATION BY THE HARMONIC-BALANCE TECHNIQUE

I Duffing's equation is representative of a system consistln$ of a

i mass resting on a sprln E with a cubic nonlinearity as shown in Fig. i.
The equation of motion is

I- mH + k(x+cx3) = F sln(_t).
#

[ .
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1 ORiGIRAL ?Adl _

OF POOR QUALITY

This equation was chosen because it has been thoroughly investigated

and the results of the harmonic-balance technique could be easily

verified. The solution methodology is as follows:

From Newton's Laws, one can argue that one component of the re-

sponse must be at the excitation frequency, so initially a solu-

tion of the form

x(t) = xI sin(_t)

is assumed and substituted into the equation of motion. The re-

sulting equation is

2 3

-m_ xI sin(_t) + k(x I sin(_t) + _xI sin3(_t)) = F sin(wt).

The term sin3(_t) is simplified using the trigonometric identity

: as

sin3(_t) = 1/4(3 sin(_t) - sin(3_t)).

which yields the following equation of motion

2

-_0xI sin(_t) + k/m xI sin(_t) + £k/4m x13(3 sln(_t)

i - sin(3_t)) = F/m sin(_t). ,

,i _i At this point, one could apply the principle of harmonic balance,

which would yield

2

-_oxI + k/m xI + 3k/4m gXl 3 = F/m

I This could be solved for the unknown amplitude xI. In doing this,

I one ignores the sin(3_t) term. This assumption is the reason the

solution is called approximate. Since this sln(3_t) term was ignored,

I-

5
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! OF POOR QUALITY

a better solution can be obtained by, upon the next iteration, let-

ting the initial assumed solution contain a term of this form. Thus

one assumes

x(t) = X! sin(_t) + x3 sin(3_t)

and substitute this into the differential equation. Upon substitu-

tion into the equation of motion thi_ yields

-m_2(x I sin(_t) + 9x3 sin(3_t)) + k(x I sln(_t) + x3 sin(3_t))

+ gk((x I sin(_t) + x3 sin(3_t)) 3) - F sin (_t).

After simplification and application of the harmonic-balance princi-

ple, the differential equation is reduced to two simultaneous equa-

tions in terms of the unknowns xI and x3. These equations are (letting
2

y - _2m/k) for coefficients of sin(_t)

2 EXlX3 2 (l_y2)xl3/4 gXl3 - 3/4 _xI x3 + 3/2 + - F/k = O.

and for coefficients of sin(3_t)

3 3 2 (l_972)x3-1/4 ExI + 3/4 Ex3 + 3/2 £xI x3 + - 0.

As can be seen, these equations are coupled and nonlinear, hence

i an explicit solution cannot be formed, except in the case of small

nonlinearities. However, the real roots of these equations repre-

i sent the approximate solution to the differential equation. The

methodology for finding the roots to these equations will be out-

! lined in a subsequent section. This process could be repeated, '

i that is readjusting the assumed for,. of the solution to account

jL
.... "_ "" " _ " " II I IlJl " II iI i -- .
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for the harmonic terms that were ignored in the previous step,

yielding a better answer. However, the algebraic equations be-

come extremely complex and hence, the process is usually termin-

ated after one or two iterations.

Damping can readily be included in the problem, rendering

the equation of motion as

mR + c_ + k(x+_x 3) - F sln(_t).

The only modification to the solution process is in the

assumed form of the solution, which in this case is

x(t) - Xll sin(_t) + x12 cos(wt) + x31 sln(3_t) + x32 cos(3_t).

This is preferred over a complex formulation so that all tom-

; plex roots of the algebraic equations can be ignored. As before,

thls assumed form of the solution is subsCituted into the equation-

• of motion, this yielding four algebraic equations in terms of the

' four unknowns (Xll, x12, x31, x32). Since the algebra for thls

case is unwieldy, the computer program FMACUT(*) was used to per-

J

! form the alsebraic manipulations. As before, the final step in

the solution is to find the appropriate solution to the resulting

algebralc equations.

! SOLUTION OF THE NONLINEAR ALGEBRAIC EQUATIONS

I In essence, the harmonic-balance technique for obtaining approximate

solutions to nonlinear ordinary diffsrenttal equations reduces the solu-

*PMACUT is a derivative of the computer prosram FOltMAC, which doesal$obraic manipulations inscsad of numerical calculations, i
I

7
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tions to finding the real roots of simultaneous, nonlinear algebraic

equatlo_s. Once these several roots are found, a physical principle

must be employed to select the correct one. Since the equations are

nonlinear, there is no direct solution technique for finding the roots.

Hence, one must resort to an iterative technique. The procedure used

is based on an approximate solution and employs a truncated Taylor

series to converge to a more precise answer. Again, perhaps the pro-

cedure is best described with the use of an example.

The algebraic equations resulting from the analysis of Duffing's

equation in the previous section were:

f(xl,x 3) = 3/4 _x13 - 3/4 CXl2X 3 + 3/2 _XlX32 + (i-72)xi - F/k = 0

g(xl,x 3) = -1/4 ¢x13 + 3/4 _x33 + 2/2 _x12x3 + (i-972)x3 = O.

Assuming one knows an approximate solution (ala3) (this can be a very

crude approxmation), these equations can be expanded in a Taylor Series

about this approximate solution

t

i f(xl,x3) = f(al,a 3) + _f/_x I (xl-a I) + _f/_x 3 (x3-a3) + ... = 0

'i i and

' g(Xl,X 3) = $(al,a 3) + _g/_x 1 (xl-a 1) + _g/_x 3 (x3-a 3) + ... = 0

i and by 18norln$ the higher order tern, these reduce to a set of linear

i I algebraic equations which can be solved for a more precise value of the

solution Xl,X 3. This process is repeated until a deeized accuracy is

Ii reached.

The approx_umtte solution used to start this procedure can often be

a very poor approximation Usually, this simply requires additional

[
8
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iterations to converge on the precise value. Sometimes, however, the

process fails to converge. This doesn't present a real problem in that

one can specify a limiting number of iterations to be performed. If

convergence is not achieved within this limiting number of iterations,

a new starting point is chosen and the process repeated.

Another problem occurs when the equations have mulitple s_ts of

real roots. In Duffing's Equation, these multiple roots represent the

well knuwn Jump phenomena. Since each set of solutions satisfies the

equations equally as well, a criteria must be established in order

to choose the appropriate solution. While further investigation is

required, at this time it appears that the correct solution for our

i physical systems is the solution that minimizes the total system energy.

i COMPARISON OF AgPROXIMATE SOLUTION WITH NUMERICAL RESULTS

In order to che=k the accuracy of the harmonlc-balance 8oluclon to

DufflnE's equation, numerical simulations were performed using the IBM

program CSMP. Since the approximate solution doesn't consider initial
conditions, the numerical simulation was continued for sufficlen¢ periods

I of time to ensure that all transient responses had been eliminated. The

output of the CSMP simulation was used in a Fourier Analysis routine to

I determine the amplicude, phase and frequency characteristics of the study-

state response. The results of several analyses, along with the approxinats

solutions are shown as m=plitude and phase plots shown in Fig. 2 through

Y*8. 5. Nots thec the approximate solutions are r_presented by • smooth

curve, vhile the numerical solutions are represented by discrete points, i

1%

9
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"" 0 OF POOR QUALITY
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This is due to the fact that the numerical solutions where somewhat

expensive, hence only a few frequencies were chosen at which to per-

i form the numerical simulations.
The system represented by Fig. 2 and Fig. 3 had the parameters ad-

justed so that the nonlinearities were small. As can be seen, the approxi-

mate and numerical solutions are in good agreement for this case. The

system represented by Fig. 4 and Fig. 5 had the parameters adjusted so

that the nonlinearities were large. By large, one means that the maximum

amplitude of the nonlinear terms in the differential equation were of

the same magnitude as that of the linear terms. As can be seen, the

harmonic-balance solution produced reasonably good results in this case.

As a final check of the harmonic-balance technique, the magnitudes

: of the Fourier components obtained from the numerical simulations

were compared. These Fourier components appear in Table I. As can be

! seen from Table i, only the first and third harmonic components are

significant, the others being much smaller than these two dot mnt

i components. Hence, additional harmonic terms were not necessary in

the initial assumed solution.

Hence, the results of this portion of the investigation indicate

" that the harmonic-balance technique can be used to produce reasonably

good solutions to this type of nonlinear differentisl equation, even

[ ,when the nonlinearities are large.
)

,l
14
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X

x(t)-2 + _ xn cos(n_t-%)
n,-1

FOURIER SMALL LARGE

COEFFIC lENT NONLINEARITY NONLINEARITY

X -3.3 x 10-6 -i.0 x 10-7
o

XI 1.162 7.38 x i0-I

X2 2.8 x 10-6 1.0 x 10-7

X3 3.61 x 10-2 2.308 x i0-I

X4 1.67 x 10-6 1.0 x 10-7

X5 7.67 x 10-4 2.75 x 10-2

i TABLE 1 Comparison of Harmonic Components Ob=ained from =he
.i Numerical Simulations for a 0.5 Hertz Excitation

Frequency

o-

1

[
[
[
[
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!
SOLUTION OF DYNAMICALLY-COUPLED NONLINEAR DIFFERENTIAL EQUATIONS

I The motivation for dealing with this problem is that the rotor equa-

tions are not only nonlinear in the sense of having terms raised to

i,_,;eger powers, but they also have terms which ccntain products of

_ Its variables. In the previous section, the ability of the harmonic-

be:lance technique to solve nonlinear equations of a system with a single

degree of freedom was demonstrated. Since the rotor equations are for

a ,iystemwith six degrees of freedom and contain the aforementioned non-

L_ Lear terms, one must demonstrate the ability of the solution technique

_ to solve such equations adequately.

Instead of beginning with the rotor equations, a simpler set of equa-

tions was chosen. This was to allow us to become familiar with solving

these types of equations before dealing with the more difficult rotor

equations. To this end, we chose to analyze the spring-pendulum system

shown in Fig. 6. This system was chosen because its equations of motion

T
* :ont_in terms _milar to the rotor equations. Using Lagrange's technique,

I the differential equations of motion for this system can be shown to be

r-re2 + CR/m r - g cos(%) + _/m(r-l) = 0

r2_+ 2r_ + %/m _ + gr sin(e) - To/_sin(_t)

The ter_s of interest are

r_2 and2r_g.

The presence of the trigonometric terms sln(0) and cos(e) pose dlffl-

culty co the so_utlon. Since the rotor equations contain no such trlgono-

!
[
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FiB. 6 Spring-Pendulum System with Coordinate System
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metric terms, a truncated Taylor series was used to approximate them.

The resulting equations are

_ - r02 + C /m r -g(l-½e 2) + k/re(r-l) = 0
R

I, r2_ + 2rre + Ce/m _ + gr(O-O3/6) = ro/m sin(_t)

A comparison of the truncated Taylor series along with the appropriate

trigonometric functions showed that the approximation was very good

(within 10%) for angles between _ 60 degrees.

As before, since the torque is driving the system at a particular

frequency, one component of the response will be at this excitation

frequency. However, the presence of more than single degree of freedom

can cause problems in the subsequent solution steps. This is because

the harmonic-balance technique is very sensitive to the assumed form of

the solution used in the equations. An assumed solution which contains

erroneous harmonic terms will result in a poor solution. Hence, one must

carefully consider the assumed form of the solution used.

As previously mentioned, one component of the response will be at the

excitation frequency. Hence, one initially assumes

I 8(t) - 811 sin(_t) + %12 cos(_t)

i Since there is no forcing function in the r(t) equation (the first
|

equation), the r(t) response will be produced by gravity and the coup-

J ling _arm re2. To gain an insight into the r(t) response, the r(t)

equation can be rearranged as

[
I 18

I

-. .
"b
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This looks !ike the equation of a harmonic oscillator with the

.9

driving functions g(l-½@ 2) and r9-. The g term and the term willr_2

produce a constant response and a response at twice the excitation fre-

quency. Hence, one assumes the r(t) response to be

r(t) - ro + r21 sin(2wt) + r22 cos(2_t).

As before, these assumed solutions are submitced into the differ-

ential equations. By ignoring terms not in the original solution and

applying the principle of harmonic balance, one produces the five non-

linear polynomials in terms of the five unknowns. The polynomials,

which were found using FMACUT, are much too long to be presented :ere.

These polynomials were then used in a solution scheme identical to that

employed in solving Duffing's equation.

Again, the results of the analysis are best shown in terms of

response graphs. In Fig. 7 through Fig. 9 are the amplitude and phase

angle for the system of Fig. 6, with system parameters as shown on the

figures. These system parameters were such that the system reponse

was fairly large. In light of the nonlinearity in the equations the

agreement between the harmonic-balance and numerical solutions is

considered good.

Thes_ results indicate that the harmonic balance method is indeed

i
" capable of producing good approximate solutions to coupled nonlinear

I" differential equations of this form. The major difficulty is choosing

the appropriate harmonic terms to be used in the solution. This is

overcome by a careful examination of the equations and verification by

I •

:+.
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i numerical analysis. Also, a good solution was produced using only the

I first terms in the assumed solution; i.e., addltional iterations on
the equations to get higher harmonic components were unnecessary. This

I the solution of the rotor equations will
is promising in that perhaps

not greatly expand the already large transfer matrices.

!
EXTENSION OF TRANSFER MATRIX METHODOLOGY TO SOLVE NONLINEAR PROBLEMS

Traditionally, transfer matrix methodology has been restricted to

!
I use in linear system analysis. However, when coupled with the harmonic-

i balance technique previously mentioned, transfer matrices can be used
to solve nonlinear problems in an approximate fashion. The major dif-

I ference is that the solution process becomes iteratlve for the nonlinear

Droblem. To demonstrate the methodology, an example using springs with

I nonlinear stiffnessee and lumped masses is presented. The matrices

l can then be used to model a system represented by Dufflns's equation,
which provides a check on the accuracy of the technique.

As with conventional transfer matrix methods, one begins by

developing the macrlcee for each individual element. Hence, we begin

by developing the matrix for a spring having a force-deflection re-

" [ lationship of the form:
I

r = k(x+cx 3)
where x is the net spring deflection.

23

, i
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OF PO_ QUALITY

I The free-body diagram of the spring is shown in Fig. 14. The inter-

nal force is assumed to have two frequency components; i.e.,

I N(C) - NI sin(_c) + N3 sin(3_t)

I Thls assumption results from the cubic nonlinearity in the spring.

Using the force-deflection relatlonship and assuming a response also of

the form:

x(t) - xI sin(_c) + x3 sin(_t)

yields the following relationship:

N(t) - k(Xlsin(_c) 3 sin(3c0c) - E(x I sin(we) + x3 sin(3_t))3).

Simplifying and applying the principle of harmonic balance to thls

equation produces the following simultaneous equations:

i Nl/k - xI+C(3/4 x13-3/4 x12x3+3/2 xlx32)

and

N3/k - x 3 + ¢(-I/4 x13+3/2 x12x3+3/4 x33) ,

i• To put chess equations into traasfsr-mstrix form, lec

i xl " XlK - Xl L

i x3 " x3R - x3L .

Defin£n8 the state vector as Ix 1 N1 z 3 N3 I 1 ]T theH equations

l ten be u'r£ccen im -.,,cr:l.x fo_

°

t 24
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L ,.._ R.....-- X

I rx

NR = NL = N
sprlns

N$prlns = k{(x R . xL) + ¢(x R - xL) 3}

j •Ft8. 10 Free-Body Dtqrm. of Nonltnur Sprtn8

[
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R --- I L_ ' :xI i i/k 0 0 N xI '

I
N1 0 1 0 0 I 0 NI

x3 = 0 0 1 i/k IINL 3 ,ix3'

0 0 0 Z I 0 N3

o o o o i l l

where

;_i = -E(3/4 x13-3/4 x12x3+3/2 XlX32 )

NL3 = -E(-i/4 x13+3/2 x12x3+3/_ x33)

Note that the nonlinear terms are not separated into left and right

variables, but simply carried along in the extension column as a

correction term. This transfer matrix is best understood as a set

of nonlinear polynomlals to which a solution must be found, in cont ast

i to a standard transfer matrix which represents a set of simultaneous

linear equations which can be explicitly solved. Hence, the solution

using this matrix in effect seeks values of the system variables

i which satisfy the equations and the boundary conditions.

To develop the transfer matrix for a lumped mass, a similiar pro-

cedure is followed. The free-body dlaEram for the lumped mass is shown

in Fig. 15. Note the assumed form of the response is consistent with

that of the spring. Since this is a point transfer matrix;

_ } R L
I xI = xI

ii" R L

x 3 = x 3

[
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I
!

_ x(t)

' Q _ F sin(_ot)

11

T _

! R L

' x = X - x(t) = x I sin(_t) + x5 sin(.3_t)

+* _F - mx _ NR - NL + F - -row {sin(_t) + 9 sin(3_t)}

I

.

!

i .

Fig. 11 Free-Body Diagram of Point Mass

I
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OF POOE QUALITY

Applying Newton's second law of motion and the principle of harmoaic

balance yields the other equations

2

NIR = NIL - _ xI -F

N32 _ N3L - 9 m_2x 3.

Note the inclusion of the external excitation _'sin(wt). These can

now be written in matrix form as

R

'Xl_ 1 0 0 0 I ' x 11 L

I
NI -ram2 i 0 0 -F N1

I
x3 = 0 0 i 0 0 x3 '

l I
0 0 -9m_ 2 1 'I__0N31 N3

,1) o o ol o ,1

Hence, systems with these types of elements can be modeled by

appropriate multiplication of transfer matrices and application of

: boundary conditions However, one problem is quite noticeable. That

is, the nonlinear terms in the extension column of the spring transfer

! matrix preclude an explicit solution. This problem is overcome in the

same fashion as finding the roots of the nonllnear polyuomials pre-I

! viously discussed.

" The solution is initially formulated by ignoring the nonlinear

terms in the extension column. Once an initial solution is found,

[ this solution is used to predict the magnitude of the nonlinear terms

in the matrix extension column. This prediction doesn't use the linear

-;[
,[

28
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solution directly, but predicts different values by using a truncated

_aylcr Series. The solution is then reformulated, including the non-

linear correction terms, and a new solution is found. This process

is repeated until a desired accuracy is achieved. Again, we will use

an example to help illustrate the method.

For the system shown in Fig. i, the boundary conditions are

L R NIR N3RxI = x3 = 0; = = O.

Hence, the initial solution is found by ignoring the nonlinear

correction terms in the spring transfer matrix, which results in the

linear solution

xI = F/k(i/(l-y2))

2
2 _m

y " --
K

and x3 - 0. Recall that the previous equations developed for the spring

are

Xl+E(3/4 x13-3/4 x12x3+3/2 XlX32)-Nl/k - 0

x3 +_(-i/4 x13+3/2 x12x3+3/4 x33)-N3/k - 0

These equations can be regarded as two simultaneous equations

for which a solution is desired. Using the above linear solution as

i n approximate solution to these equations, one can expand these equa-
tions in a truncated Taylor series yielding two simultaneous linear

I algebraic equations whl,.h can be solved for a more precise solution.

The resulting solution to these equations can then be used to more
I-

L accurately predict the nonlinear correction terms in the spring transfer
2
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matrix. This provides for better convergence of the overall solution.

the overall solution is then reformulated, using the nonlinear correc-

tion temns in the spring transfer matrix, and a new solution found.

This process is repeated until a desired accuracy is achieved.

In regions where multiple solutions are possible, i.e., as with

the jump phenomena, one can find these multiple solutions. This is

accomplished by resolving the problem using a different initial solu-

tion; i.e., one that differs from the linear solution. T_,Es is done

by modifying the initial state vector in the initial solution. This

change is somewhat arbitrary in that it only provides a starting point

from which to begin the solution process.

The results obtained (for the system of Fig. i) with this procedure

were identical to those obtained using the harmonic-balance principle

on the differential equation. In obtaining the numerical value of

the solution, this method required twice the number of iterations as

the harmonic-balance method. This is because the transfer matrix

method calculates displacement and internal force instead of Just

displacement, as in the harmonlc-balance method.

SUMMARY

i This report has outlined what is believed to be very significant

i work in the area of the advancement of transfer matrix methodology.
Problems with large and small nonllnearltles have been solved with the

1 proposed harmonlc-balance technique. This technique was subsequently

implemented in a transfer matrix solution scheme which allows the solu-

[

3O
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!

tion of nonlinear structural mechanics problems via a transfer matrix

scheme.

This work has put the project in the position that provides confi-

dence that its implementation on a geared rotor analysis can proceed in

an orderly and successful manner.

!

i
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